PMT

Question			Marking details			Marks Available	
1	(a)		Rate of change [accept: increase] of velocity [not speed]. accept: $\frac{v-u}{t}$ or $\frac{\Delta v}{t}$ or $\frac{\Delta v}{\Delta t}$ (not $\frac{v}{t}$)			1	
	(b)	(b) (i) Both ΣF calculated correctly (20 N and 4 N) (1) Use of $a = \frac{\Sigma F}{m}$ (1) Accelerations = 10 m s ⁻² and 2 m s ⁻² (e.c.f.) (1) [Accept answers based upon calculating resultant acceleration] (ii) Diagram with forces shown in opposition (1) and horizontal (1) [B.o.d. on plan-view forces unless clearly incorrect]			cceleration]	3	
					prizontal (1)	2	
	(C)		Statement xxxxxxxxx xxxxxxxxx	Must be true	Could be true	Cannot be true	
			XXXXXXXXXX XXXXXXXXXX		×	\checkmark	4
							[10]
2.	<i>(a)</i>		Same p.d. in both branches (1) $2 \times \text{resistance in upper branch (or converse) (1)}$ Correct qualitative $\frac{1}{2}$ current in upper branch (or converse) (1) answer $\rightarrow 1$ mark Currents add up to 0.12 A (1)				4
	<i>(b)</i>	(b) (i) $4.8 V$ (ii) $9.6 V$				1 1	
	(c) (i) Correct use of $R = \frac{V}{I}(1)$ [or by implication] = 120 $\Omega(1)$ [e.g. $\frac{4.8}{0.04} \checkmark, \frac{9.6}{0.08} (\checkmark b.o.d.)$ or $\frac{9.6}{0.4} \checkmark$ not $\frac{9.6}{1.2} \times$] (ii) $\frac{1}{R} = \frac{1}{R_A} + \frac{1}{R_B}$ [or equiv.] and use of correct values of R_A and R_B . [or				Ω (1) of R_A and R_B . [or	2	
			or $R = \frac{9.6}{0.12}(1) = 8$	80 Ω (1)			2
							[10]

Question			Marking details	Marks Available
3	(a)	(i)	2.4 V	1
		(ii)	$\frac{V}{V_{\text{TOTAL}}} = \frac{R}{R_{\text{TOTAL}}} \text{ or } V_{\text{OUT}} = \frac{R_1}{R_1 + R_2} V_{\text{IN}} \text{ , selected [or by impl.]}$ Substitution, e.g. $3.6 = \frac{225}{225 + R_1} 6.0 (1) \text{ [or by impl.]}$	
			$225 + R_{2}$ Manipulation (1); $R_{2} = 150 \Omega$ (1) Or – from 1 st principles: $\frac{3.6}{225}(1) = 0.016 \text{ A} (1); \frac{2.4}{0.016}(1) = 150 \Omega$ (1) [or $\frac{6.0}{225} = 375 \Omega$ then $375 = 225 = 150 \Omega$]	4
	(b)	(i)	$\begin{bmatrix} \text{or } \\ \hline{0.016} \end{bmatrix} = 575\Omega \text{ then } 575 - 225 = 150\Omega \end{bmatrix}$ R ₂ changed to 1500 Ω	1
		(ii)	Initial current = $\frac{6.0}{375 \text{ e.c.f.}}$ (1) = 0.016 A (1) Final current = 0.0016 A (1) [or accept answer based upon a good qualitative argument] N.B. Calculation of final current \rightarrow only 2 unless current previously	2
			calculated	3 [9]
4.	(a)		Collisions between electrons and lattice [or atoms of the conductor or [metal] ions] (1) Kinetic energy of electrons transferred to lattice (1)	
			[accept: interactions instead of collisions]	3
	(b)	(i)	-190°C	1
		(ii)	A \rightarrow B [accept -250190, or "temperatures below -190] [full region required]	1
	(c)		liquid nitrogen [accept: liquid helium]	1
				[6]

Question			Marking details	Marks Available
5.	(a)		Flow of charge	1
	(b)	(i)	$ \begin{array}{c} $	
			Diagram (1) Volume of conductor = Al Number of free electrons = nAl Total charge flowing within $l = nAle$ [Accept without [] if diagram is clear] (1)	
			$I = \frac{nAle}{t} (1) \text{ and } v = \frac{l}{t} (1)$	4
		(ii)	$v = \frac{I}{nAe}$ = $\frac{3.0}{5.0 \times 10^{28} \times 2 \times 10^{-6} (1) \times 1.6 \times 10^{-19}} = 1.9 \times 10^{-4} \text{ m s}^{-1} ((\textbf{unit}))(1)$	2
		(iii)	Ithe same as IIhalf	1 1
				[9]
6	(a)		Units of LHS = N = kg m s ⁻² Units of RHS = (kg m ⁻³ . m ²) (+ manip.)(1) × (m ² s ⁻²) (1)	3
			$v^{2} = \frac{2.8 \times 10^{4}}{1.2 \times 15 \times 4.2} (1) \text{ [or by impl.]}$ v = 19.2 m s ⁻¹ (1)	2
	<i>(b)</i>	(i)	Centre of gravity	1
		(ii)	Bottom of near-side wheel labelled as 'pivot'	1
			$F_{\text{wind}} \times 2.1 \ (1) = 1.0 \times 10^5 \times 1.4 \ (1) \ [\text{or by impl.}]$ $\therefore F_{\text{wind}} = 67 \ \text{kN} \ (1) \ [\text{accept } 66 \ \text{kN} \checkmark \text{b.o.d.}]$	3
				[10]

Question			Marking details	Marks Available
7.	(a)	(i)	Ball is seen to stay directly in front of the passenger [or clearly implied by 2 nd statement]. (1) No [horizontal] forces on ball [so horizontal speed is constant, with the same value as the train] (1)	2
		(ii)	Observer sees the ball moving in the same direction as the train [with the same speed]. [Accept: "moving with the train."]	h 1
	(b)		Passenger sees the ball accelerating [or moving] 'backwards' [or towards the rear of the train]. Observer sees the ball moving in the same direction as the train with decreasing speed. (1) Net [horizontal] force on ball [due to air resistance] towards the bac	n k
			of the train. (1)	3
		(i)	The graph is symmetrical / up time = down time.	1
		(ii)	x = 11 m; $t = 1.5 s(1)$	
			$x = \frac{u+v}{2}t, \text{ or } \\ 11 = \frac{u}{2} \times 1.5 (1) \\ x = \frac{u+v}{2}t, \text{ or } \\ 0 = u^2 + 2 \times 9.81 \times 11 \\ (1) \\ y = \frac{u}{2}t, \text{ or } \\ 11 = 1.5u + \frac{1}{2}9.81 \times 1.5^2 \\ (1) \\ y = \frac{u}{2}t, \text{ or } \\ 11 = 1.5u + \frac{1}{2}9.81 \times 1.5^2 \\ (1) \\ y = \frac{u}{2}t, \text{ or } \\ 11 = 1.5u + \frac{1}{2}9.81 \times 1.5^2 \\ (1) \\ y = \frac{u}{2}t, \text{ or } \\ 11 = 1.5u + \frac{1}{2}9.81 \times 1.5^2 \\ (1) \\ y = \frac{u}{2}t, \text{ or } \\ 11 = 1.5u + \frac{1}{2}9.81 \times 1.5^2 \\ (1) \\ y = \frac{u}{2}t, \text{ or } \\ 11 = 1.5u + \frac{1}{2}9.81 \times 1.5^2 \\ (1) \\ y = \frac{u}{2}t, \text{ or } \\ 11 = 1.5u + \frac{1}{2}9.81 \times 1.5^2 \\ (1) \\ y = \frac{u}{2}t, \text{ or } \\ 11 = 1.5u + \frac{1}{2}9.81 \times 1.5^2 \\ (1) \\ y = \frac{u}{2}t, \text{ or } \\ 11 = 1.5u + \frac{1}{2}9.81 \times 1.5^2 \\ (1) \\ y = \frac{1}{2}t, \text{ or } \\ 11 = 1.5u + \frac{1}{2}9.81 \times 1.5^2 \\ (1) \\ y = \frac{1}{2}t, \text{ or } \\ 11 = 1.5u + \frac{1}{2}9.81 \times 1.5^2 \\ (1) \\ y = \frac{1}{2}t, \text{ or } \\ 11 = 1.5u + \frac{1}{2}9.81 \times 1.5^2 \\ (1) \\ y = \frac{1}{2}t, \text{ or } \\ 11 = 1.5u + \frac{1}{2}t, \text$	2
			$\therefore u = 14.7 \text{ m s}^{-1} (1) [\text{accept } v = u + at \text{ with } v = 0 \text{ and } t = 1.5 \text{ s}]$	3
		(iii)	Graph : $v \operatorname{axis} - 20 \operatorname{to} + 20 \operatorname{e.c.f.}(1)$ Intercept on $v \operatorname{axis} 14.7 \operatorname{m s}^{-1} \operatorname{e.c.f.}(1)$ Straight line graph (1) to intercent time axis of 1.5 s (1)	
			Graph continued straight beyond 1.5 s to negative values of $v(1)$	5 [15]

Question			Marking details	Marks
Question				Available
8	(a)		Energy cannot be created or destroyed (1)[only] changed from one form into another (1) [Accept: total energy [in the Universe] is constant for 1 st mark]	2
	<i>(b)</i>	(i)	Area under graph = energy stored (1) [or by impl.] x = 70 m chosen (1) [or by impl.] Elastic potential energy [= $\frac{1}{2} \times 1600 \times 70$] = 56 kJ (1) Alternative: calculation of k [22.9 N m ⁻¹] or left as, e.g. $\frac{1600}{70} \checkmark$	3
			Use of $x = 70$ m to calculate energy \checkmark ; Energy stored = 56 kJ \checkmark	3
		(ii)	70 kJ − 56 kJ (e.c.f.) (1) = mgh (1) [Or $E_p(\text{grav})$ lost = 60×9.81×96 (1) [= 56 kJ]. \therefore 14 kJ = mgh (1)] $\therefore h = 23.8 \text{ m}$ (1) Alternative: 7.0 × 10 ⁴ J = mgh ✓ → h = 118.92 m ✓ Then subtract 96 m → 22.92 m ✓	3 [11]
		(iii)	Tension in 'bungee' = weight of Jumper = 60×9.81 [= 589 N] (1) From graph $x = 26$ [± 1] m (1) [or from $k \rightarrow 25.8$ m] $\therefore d = 52$ m. (1)	