

Question			Marking details	Marks Available
5.	(a) (b)	(i) (ii) (iii)	Flow of charge n [free] electrons per unit volume [or electron density] [or in written answer] Diagram (1) $\left.\begin{array}{l}\begin{array}{l}\text { Volume of conductor }=A l \\ \text { Number of free electrons }=n A l\end{array} \\ \text { Total charge flowing within } l=n \text { Ale }\end{array}\right\}$ [Accept without [] if diagram is clear] $\begin{aligned} I & =\frac{n A l e}{t}(1) \text { and } v=\frac{l}{t}(1) \\ v & =\frac{I}{n A e} \\ & =\frac{3.0}{5.0 \times 10^{28} \times 2 \times 10^{-6}(1) \times 1.6 \times 10^{-19}}=1.9 \times 10^{-4} \mathrm{~m} \mathrm{~s}^{-1}((\text { unit }))(1) \end{aligned}$ I. \qquad the same as II. \qquad .half.....	1 4 2 1 1 [9]
6	(a)	(i) (ii)	```Units of \(\mathrm{LHS}=\mathrm{N}=\mathrm{kg} \mathrm{m} \mathrm{s}^{-2}\) Units of RHS \(=\left(\mathrm{kg} \mathrm{m}^{-3} \cdot \mathrm{~m}^{2}\right)(+\) manip. \()(1) \times\left(\mathrm{m}^{2} \mathrm{~s}^{-2}\right)(1)\)``` $v^{2}=\frac{2.8 \times 10^{4}}{1.2 \times 15 \times 4.2}(1)$ [or by impl.] $v=19.2 \mathrm{~m} \mathrm{~s}^{-1}(1)$ Centre of gravity Bottom of near-side wheel labelled as 'pivot' $\begin{aligned} & F_{\text {wind }} \times 2.1(1)=1.0 \times 10^{5} \times 1.4(1) \text { [or by impl.] } \\ & \therefore F_{\text {wind }}=67 \mathrm{kN}(1) \text { [accept } 66 \mathrm{kN} \checkmark \text { b.o.d.] } \end{aligned}$	3 2 1 1 3 [10]

Question			Marking details	Marks Available
7.	(a)	(i)	Ball is seen to stay directly in front of the passenger [or clearly implied by $2^{\text {nd }}$ statement]. (1) No [horizontal] forces on ball [so horizontal speed is constant, with the same value as the train] (1)	2
		(ii)	Observer sees the ball moving in the same direction as the train [with the same speed]. [Accept: "moving with the train."]	1
	(b)		Passenger sees the ball accelerating [or moving] 'backwards' [or towards the rear of the train]. Observer sees the ball moving in the same direction as the train with decreasing speed. (1) Net [horizontal] force on ball [due to air resistance] towards the back of the train. (1)	3
		(i)	The graph is symmetrical / up time $=$ down time .	1
		(ii)	$\begin{array}{l\|l\|l} x=11 \mathrm{~m} ; t=1.5 \mathrm{~s}(1) \\ x & =\frac{u+v}{2} t, \text { or } & \begin{array}{l} \text { or } \\ v^{2}=u^{2}+2 a x \text { or } \\ 0=u^{2}+2 \times 9.81 \times 11 \end{array} \\ 11=\frac{u}{2} \times 1.5(1) & \begin{array}{l} \text { or } \\ x=u t+1 / 2 a t^{2}, \text { or } \\ 11=1.5 u+1 / 29.81 \times 1.5^{2} \end{array} \\ \therefore u=14.7 \mathrm{~m} \mathrm{~s}^{-1}(1)[\text { accept } v=u+\text { at with } v=0 \text { and } t=1.5 \mathrm{~s}] \end{array}$	3
		(iii)	```Graph: \(v\) axis -20 to +20 e.c.f. (1) Intercept on \(v\) axis \(14.7 \mathrm{~m} \mathrm{~s}^{-1}\) e.c.f. (1) Straight line graph (1) to intercept time axis of 1.5 s (1) Graph continued straight beyond 1.5 s to negative values of \(v\) (1)```	$\begin{gathered} 5 \\ {[15]} \end{gathered}$

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& Marking details \& \begin{tabular}{l}
Marks \\
Available
\end{tabular} \\
\hline 8 \& (a)
(b) \& (i) \& \begin{tabular}{l}
Energy cannot be created or destroyed (1) ...[only] changed from one form into another (1) \\
[Accept: total energy [in the Universe] is constant for \(1^{\text {st }}\) mark] \\
Area under graph \(=\) energy stored (1) [or by impl.] \\
\(x=70 \mathrm{~m}\) chosen (1) [or by impl.] \\
Elastic potential energy \([=1 / 2 \times 1600 \times 70]=56 \mathrm{~kJ}\) (1) \\
Alternative: calculation of \(k\left[22.9 \mathrm{~N} \mathrm{~m}^{-1}\right]\) or left as, e.g. \(\frac{1600}{70} \checkmark\) \\
Use of \(x=70 \mathrm{~m}\) to calculate energy \(\checkmark\); Energy stored \(=56 \mathrm{~kJ} \checkmark\)
\[
\begin{aligned}
\& 70 \mathrm{~kJ}-56 \mathrm{~kJ}(\text { e.c.f.) })(1)=\operatorname{mgh}(1) \\
\& {\left[\mathbf{O r} E_{\mathrm{p}}(\text { grav) lost }=60 \times 9.81 \times 96(1)[=56 \mathrm{~kJ}] . \therefore 14 \mathrm{~kJ}=\operatorname{mgh}(1)]\right.} \\
\& \therefore h=23.8 \mathrm{~m}(1)
\end{aligned}
\] \\
Alternative: \(7.0 \times 10^{4} \mathrm{~J}=m g h \checkmark \rightarrow h=118.92 \mathrm{~m} \checkmark\) \\
Then subtract \(96 \mathrm{~m} \rightarrow 22.92 \mathrm{~m} \checkmark\)
\[
\begin{aligned}
\text { Tension in 'bungee' } \& =\text { weight of Jumper } \\
\& =60 \times 9.81[=589 \mathrm{~N}]
\end{aligned}
\] \\
From graph \(x=26[\pm 1] \mathrm{m}(1)\) [or from \(k \rightarrow 25.8 \mathrm{~m}]\)
\[
\therefore d=52 \mathrm{~m} . \text { (1) }
\]
\end{tabular} \& 2

3

3

3
[11] \\
\hline
\end{tabular}

